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ABSTRACT: We report theoretical analysis of the electronic flexoelectric effect
associated with nanostructures of sp2 carbon (curved graphene). Through the
density functional theory calculations, we establish the universality of the linear
dependence of flexoelectric atomic dipole moments on local curvature in various
carbon networks (carbon nanotubes, fullerenes with high and low symmetry, and
nanocones). The usefulness of such dependence is in the possibility to extend the
analysis of any carbon systems with local deformations with respect to their
electronic properties. This result is exemplified by exploring of flexoelectric effect
in carbon nanocones that display large dipole moment, cumulative over their
surface yet surprisingly scaling exactly linearly with the length, and with sine-law
dependence on the apex angle, dflex ∼ L sin(α). Our study points out the
opportunity of predicting the electric dipole moment distribution on complex
graphene-based nanostructures based only on the local curvature information.

The discovery of freestanding graphene1 promoted the
extensive investigations of the properties of monolayered

two-dimensional structures. An infinite graphene sheet displays
no dipole moment (except the instantaneous quantum-
fluctuative responsible for the van der Waals interactions). A
homogeneous mechanical distortion of graphene also cannot
induce electrical dipole due to graphene lattice central
symmetry center (no piezoelectric effect). This rule, however,
does not apply to the second-order electronic flexoelectric
effect (EFE) induced by the strain gradient, especially by the
bending of graphene sheet, which is one of the most intriguing
properties of graphene. EFE is a unique feature associated with
atomic monolayers, referring to the emergence of net of electric
dipole moments in a deformed nonpolar two-dimensional (2D)
system due to the mirror symmetry breaking which leads to
charge redistribution. It has first been demonstrated for carbon
nanotube (CNT), as a graphene sheet wrapped into a seamless
cylinder, that the dipole moment of each charge-neutral atom is
nonzero;2 the total dipole moment of CNT however vanishes
due to its cylindrical symmetry. It is expected that a small part
of nanotube should display a significant local dipole moment.
Nonzero total dipole moment of graphene can be obtained by
nonsymmetrical distortion, for example, by the bending of the
finite graphene piece.3

Graphene can naturally be considered as a building precursor
for the family of previously discovered carbon shell structures,
such as fullerenes, CNTs, nanoribbons, and nanocones, which
all possess intriguing properties. One can expect that similar

type of covalent bonding in these nanostructures should permit
to describe their flexoelectricity in some common way.
Although the previous atomistic studies showed the linear

dependence of atomic dipole moment on the local curvature in
CNT with equivalent carbon atoms, the assessment of EFE in
the structures with nonequivalent atoms remains unclear. On
the other hand, such structures, including low symmetry
fullerenes and nanocones, are gaining more interest.
In this paper, the universality of the linear dependence of

flexoelectric dipole moments on the local curvature for different
carbon networks with various atomic arrangements is
established by combining direct ab initio calculations with,
wherever possible, analytical phenomenological equations.
Using the obtained universal flexoelectric coefficient, the large
dipole moment values of various carbon nanocones are
predicted and their scaling with cone dimensions is elucidated.
We found a linear dependence of the total dipole moments of
nanocones, of a given apex angle, on their lateral length. Our
analysis suggests the possibility of predicting the electric dipole
moments of complicated low-dimensional systems based on
their geometry.
In the following, we first calculate the atomic dipole

moments for structures with atoms equivalent by symmetry
and then extend the approach to the structures with
nonequivalent C atoms. Then the dipole moments of the
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cones are analyzed which reveals two physical origins:
flexoelectricity and edge contribution. The influence of the
edge of carbon cones was excluded by connecting two identical
individual cones with each other by their edges.
The density functional theory4,5 within the local density

approximation for the exchange-correlation functional6 employ-
ing norm-conserving Troullier−Martins pseudopotentials7 in
the Kleinman−Bylander factorized form8 was used for
calculation of electronic properties of the studied structures.
Finite-range numerical pseudoatomic wave functions were used
as an atomic-orbital basis set. The geometrically confined
systems were treated in a supercell scheme allowing at least 20
Å of empty space between them to make intermolecular
interactions negligible. The geometry of the structures was
optimized until residual forces became less than 0.04 eV/Å.
The real-space mesh cutoff was set to 200 Ry for the relaxation
and calculation of dipole moment of whole system and to 350
Ry for the charge density output. The Monkhorst−Pack9
special k-point scheme was used. The 0.1 Å−1 k-point spacing
was used during the relaxation. For the electronic structure
calculations the SIESTA package10,11 was used. At the DFT
level of theory, the dipole moment of hydrocarbon molecules
can be well predicted: values of dipole moment of azulene and
toluene are equaled to 0.796 ± 0.014 D12 (experiment) and
0.813 D (computation) and to 0.360 D13 (experiment) and
0.357 D (computation), respectively. Therefore, we can expect
the same accuracy of the calculation of dipole moment of
considered structures.
To calculate the dipole moment assigned to an individual

atom, it is necessary to decompose the total charge distribution
of the structure into atomic charge cells. In ref 2, such a
decomposition procedure was carried out for the carbon
nanotubes by Bader method,14 which splits the whole charge of
the system into nonoverlapped regions based on the method-
ology of zero-flux surface in the gradient of the charge density.
In present work, the method of construction of Wigner−Seitz
cell for each atom was used. Such a simple and physically clear
procedure allows the dividing of charge density obtained from
DFT calculations of any crystal lattice to assign the individual
charge cell around each atom in the lattice. The Wigner−Seitz
decomposition results in electrically neutral atomic cells (within
the accuracy of finite grid cut) in all considered systems which
is originated from the pure covalent bonding in carbon

structures. It allows one to assume that this approach can be
used for the evaluation of atomic dipole moment, which was
calculated with respect to the center of individual atom where
the integration over the cut cell volume was carried out as
∫ ρ(r)⃗r ⃗ d3r.⃗ It should be noted that the results of atomic dipole
moment calculations obtained by Wigner−Seitz cell and by
Bader methods are same. This result underlines the validity of
using either Bader or Wigner−Seitz procedures of charge
decomposition which are based on the different physical
approaches: dividing of electronic density and lattice structure,
respectively.
For the estimation of flexoelectric effect in big carbon cones

the atomic structures were optimized by molecular mechanics
method with AIREBO Brenner/Stuart potential15 as imple-
mented into LAMMPS package.16

The induction of atomic dipole moment by the curvature of
the atomic net relates with a loss of plane mirror symmetry of
initial structure and with redistribution of charge density. The
initial operating assumption is the possibility to assign the
dipole moment values to every equivalent atom of the high-
symmetry structures: carbon nanotubes, high-symmetry full-
erenes (C60, C20, and C8), and graphene (in the last case all
atoms have zero dipole moment). The electronic density of the
whole structure is decomposed into atomic charge density cells
and atomic dipole moments are evaluated. As in a previous
case,2 the linear dependence of atomic dipole moment on the
curvature of the structures was obtained (see inset in Figure
1a), except highly distorted structures of (2,2), (3,0), (4,0)
nanotubes and C8 fullerene. It should be noted that in the case
of fullerenes, the curvature value is doubled due to the spherical
shape containing two principle Gaussian curvatures,3 which is
different from the cylinder (nanotube). From the approximately
linear dependence, the flexoelectric constant f R = 0.80 D·Å was
obtained. The f R constant determines the relationship between
curvature and dipole moment with a value that is very close to
the data from ref 2 (0.82 D·Å) and ref 3 (0.75−0.90 D·Å)
calculated for the CNT and bent graphene piece, respectively.
We see that curvature is not the only geometrical measure

relating to the local dipole moment, per atom. Another
convenient measure is pyramidalization angle Θσπ, defined as an
angle between σ and π orbitals, equaled to π/2 for planar
systems (further, the value θp = Θσπ − π/2 will be used).
Pyramidalization angle is valuable parameter for describing the

Figure 1. (a) Computed atomic dipole moments μ for carbon nanostructures as a function of pyramidalization angle θp and curvature (the inset
shows dipole only for systems composed of equivalent atoms, where Gaussian curvature æ equals to (1/R) in a case of nanotubes and (2/R) in a case
of fullerenes); red points indicate highly distorted structures which dipole moment deviates from the linear dependence. (b) Color distribution of
atomic dipole moment values for C80 and C84 fullerenes. Different colors correspond to various values of atomic dipole moment.
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local distortions of carbon networks and related to the local
properties (strain, chemical activity, etc.).17,18 The curvature
and pyramidalization angle are the parameters of continuum
and discrete models of atomic structure, respectively, and the
relation between them can be easily written down as

μ θ= · = ·θf F æp p (1)

where fθp is angle-dependent flexoelectric constant, θp is
pyramidalization angle, æ is curvature, and F is the curvature-
dependent flexoelectric constant.
In case of CNT, pyramidalization angle could be derived

from curvature as sin(θp) ≈ (d/(4R)), whereas in a case of
fullerene it is twice a larger, for the same radius: sin(θp) = (d/
(2R)),17 where d is the interatomic distance, and R is the radius
of CNT or fullerene.
The benefit of using pyramidalization angle is in the

possibility to extend the analysis to any carbon system with
highly local deformations, not fully captured by the overall
curvature. To show this, two fullerenes C80 (Ih symmetry) and
C84 (Cs symmetry) with nonidentical atoms were studied. Their
structures and color-coded dipole moment values are shown in
Figure 1b. Fullerene C80 has 2 nonidentical atoms due to its
symmetry (Ih), whereas C84 has lower symmetry (Cs) and
possess 42 nonidentical atoms in the structure and the same
number of incrementally different dipoles. Figure 1a shows that
atomic dipoles for all structures are well consistent with linear
dependence, with fθp = 2.34 D/rad.
Having verified the relationship between local curvature and

the dipole moment it induces, one can proceed to using it for
larger nanostructures, where directing first-principles computa-
tion becomes unaffordable or at least cumbersome. Here, we
consider the nanocones, produced in a number of experi-
ments.19−21 A nanocone consists of a curved graphene sheet
(like CNT) and a cap with pentagonal defects (like fullerene),
which induce overall curvature of the structure. Highly curved
cap distorts electronic density at the top of the cone and should
display high dipole moment; it might be used as a source for
electron emitting in external field.22

Different carbon cones (depending on the number of
pentagons23 at the apex) with nominal apex angles of α =
112.9°, 83.6°, 60.0°, 38.9°, and 19.2° were observed in
experiment.21 Figure 2 shows the cone caps, studied here,
and cone schematics with basic notations.

The total dipole moment of the cone could be divided into
three parts. The first one is induced by the curvature of
graphene sheet dflex (flexoelectric effect). The second is due to
redistribution of charge density near the cone’s cap (dcap).
Third part is related with the dipole moment of the cone’s edge
which greatly depends on the passivation type. First, two parts
can be computed directly from the pyramidalization angles at
each atom, using known fθp coefficient. Atoms in the cone’s cap
will have the greatest individual contribution to the total dipole
moment due to the high local curvature. The third edge part is
not really intrinsic property of a cone and should be avoided in
computations here.
The relation between curvature and dipole moment induced

by flexoelectric effect can be established through the integration
over the cone surface, that is along its length L

∫ ∫π π α= · =
Δ Δ

d
S

R
f

R
z

S
f L

1
2 d sin( )d

L
R

R

L

flex
0 0 0 0 (2)

Notably, here the mass increment (∼R) and the curvature
(∼1/R) dependencies cancel each other precisely, so that the
cumulative dipole moment is simply proportional to linear
dimension (∼L) and not to cone area or some complicated
function of L

π αΔ = Δd L
S

f L( ) sin( )Rflex
0 (3)

where S0 is area per carbon atom (2.62 Å2) and ΔL is the
distance between the apex-cap and the bottom end of the cone.
In eq 3, the contribution to the dflex from the cap per se (dcap) is
not included but can be added as a constant (∼L0) obtained
from the atomic structure and known fθp coefficient.
One can also see from eq 3 how the cone dipole moment

depends on the apex angle; the cones with apex angles close to
90° must display the maximum total dipole, among the cones of
the same length L. These conclusions are corroborated by
atomic-model calculations of the dipole moment depending on
the cone’s length, shown at Figure 3a. Apex angles equal to 0°
and 180° correspond to the limiting cases of the cone with
parallel sides which can be represented as (5,5) carbon
nanotube (open on one side) or flat graphene, which both
do not display any dipole moment, and no dependence on the
length. In the former case, only the cap of a tube contributes a
constant dipole moment, whereas in the latter case, the dipole
moment equals zero. Figure 3b shows the dependence of dipole
moment per cone’s length on the apex angle depicted by black
line. It should be noted that cones with apex angle close to 90°
displays the highest value of dipole moment, in accord with
analytically derived sine law of eq 3. Further increase of the
apex angle leads to the relative reduction of cap’s contribution
into the total dipole moment.
The derivation of eq 3 is made with the assumption of L =

constant, which does not constrain the cone surface (mass),
however. Perhaps it is more reasonable to compare the cones of
equal mass, which can be done by changing the integration
limits in eq 2 from cone length to cone surface ΔS between the
end of a cap and end of the cone. Taking ΔS = πΔL2 sin(α/2)
in the above-mentioned integral leads to the equation

π α α= ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠d S

S
f S( )

2
cos

2
sin

2Rflex
0 (4)

One concludes that the maximum dipole moment among the
cones of equal surface/mass is shifted to the lower apex angles,

Figure 2. Relaxed structures of the cones with apex angles α = 112.9°,
83.6°, 60.0°, 38.9°, 19.2° and basic schematic showing α and length L.
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in comparison with the previous case. Cones with α ≈ 70.5°
display the largest dipole which leads to the superior dipole
moment of “magic” cones with α = 60.0° and 83.6°. The
predicted trend is supported by atomistic computations (blue
line in Figure 3b) whose values also follow the ∼ cos(α/
2)(sin(α/2))1/2 law.
To further validate the results obtained by either continuum

level model eq 3 or by the summation ∑fθp·θp of
pyramidalization contributions over the atomistic structure,
we also perform direct DFT computations of the total dipoles.
However, to avoid the contribution from the atoms at the cone
edge, the symmetrical structure made by joining two identical
cones at their edges can be designed (Figure 4a). The dipole
moment of individual cone was calculated using the charge
density obtained by bisecting the total charge density through
symmetry plane (mirror plane or boundary between red and
blue regions at Figure 4a). Obtained values of dipole moments
for the cones of different apex angles and lengths are shown in

Figure 4b, red lines with dots-circles represent results directly
from the DFT calculations of charge distribution. Dipole
moments obtained from the linear eq 1 between dipole
moment and pyramidalization angle are shown by black lines
with open squares. The dipole moments calculated by analytical
eq 3 are shown by blue lines in Figure 4b and display smaller
values of dipole moment compared to other sets, apparently
due to omission of the cone’s cap contribution. Small difference
in the slope can be due to the difference in apex angles of the
double symmetrical structure and the nominal angle of a free-
individual cone.
Remarkable agreement between the three sets of data

suggests the pure flexoelectric nature of dipole moments in
the graphitic cones and demonstrates the power of presented
method to predict the flexoelectric dipole moments of arbitrary
graphene-based nanostructures directly from their geometry,
circumventing the burden of full scale charge density
computations, which is often unaffordable. The exclusion of
cones edge contribution allows us to obtain the dipole moment
originating only from the flexoelectric nature of sp2 carbon
network. Such property of the graphene based nanostructure
should reveal itself in every case of bent graphene sheet like in
cones or corrugated free-standing graphene even if it is not
directly observed in experiment when concealed by other
electrostatics (e.g., polar edges).
Presented comprehensive study of flexoelectric effect in

carbon nanostructures is based on the ansatz that charge in the
covalently bonded structure can be decomposed to be assigned
to each individual node-atom (which is rigorous in cases with
the atoms identical by symmetry). Extending this from highly
symmetrical structures to low-symmetry structures containing
nonequivalent atoms allows one to study flexoelectric effect of
various carbon nanostructures, for example, carbon cones. It is
shown that proposed model describes nanocones with different
apex angles and lengths very well, in good agreement with
direct full-scale electronic structure computations. The depend-
ence of dipole moment of carbon nanocones on their apex
angles and lengths was calculated using empirical relation
between dipole moment and pyramidalization angle, and shows
perfect agreement between three sets of obtained data: density
functional theory approach, empirical linear relation between
dipole moment, and local curvature and analytical eq 3. We
show a correlation between atomic scale characteristic
(pyramidalization angle) and macroscopic characteristic
(curvature) of material and substantiate that slight variations
in atomic structure will lead to significant changes of

Figure 3. (a) Flexoelectric dipole moments versus the cone length. Dots were obtained by the summation of pyramidalization angles, using fθp
coefficient. (b) Flexoelectric dipole moment per surface (blue line with empty dots) and per length (black line with filled dots) versus the apex-angle;
0° corresponds to nanotube (5,5) and 180°corresponds to graphene sheet, whose zero values are not shown in (a). Solid black and blue lines
represent predicted trends from analytical eqs 3 and 4, respectively.

Figure 4. (a) Atomic structures and schematic charge distributions of
symmetrical structures corresponding to cones with apex angles of
83.6° and 38.9°. Regions of charge density used for the estimation of
dipole moments of each part of double cone in DFT calculations are
highlighted by red and blue colors. (b) Flexoelectric dipole moments
of the cones depending on their length calculated by different
methods. Red lines with circles represent data obtained directly from
the calculations of charge distribution; black lines with open squares
display data from the linear relation between dipole moment and
pyramidalization angle; blue lines show data obtained by using
analytical eq 3.
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macroscopic characteristics of material by the example of dipole
moment.
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